Cloud computing concept, Man hand using smartphone connect to cloud for transfer data.

What is infrastructure security in cloud computing?

Society’s pivot towards cloud computing environments for work and personal use has occurred at pace over recent years. With work migrating to the cloud and businesses adopting a cloud-first approach to wider operations more generally, our reliance on cloud applications grows by the day.

Business leaders and computer science specialists must ensure that adequate cloud computing security is prioritised amid these rapid technological advances and transitions. It’s a concern for many, with 75% of businesses and 68% of cybersecurity experts pinpointing misconfigured cloud infrastructure as the top security threat.

What is cloud infrastructure security?

The aim of cloud infrastructure security is to protect cloud-based assets from cybersecurity threats. There are a number of challenges presented by modern cloud computing – from regulatory demands to inconsistent and patchy security policies – which cloud security frameworks make it simpler and easier to address.

Despite this, traditional tools and methods of network security still create critical gaps and vulnerabilities that hackers can leverage. Some of the key security challenges and risks associated with cloud networks include:

  •         data breaches
  •         visibility
  •         migration of dynamic workloads
  •         misconfigurations
  •         unsecured APIs
  •         access control/unauthorised access
  •         securing the control plane
  •         security compliance and auditing
  •         end user error and lack of security awareness.

The nature of cloud systems is that they are dynamic; cloud resources can be particularly short-lived, with many being created and deleted multiple times each day. As a result, each individual ‘building block’ in a cloud network must be robustly and systematically secured – though it is made more complicated by working practice shifts such as bring-your-own-device (BYOD) and remote working.

Cloud data is primarily stored in public cloud and private clouds, although other cloud strategies – such as multi-cloud and hybrid cloud – are also popular. There are four main cloud computing service models: infrastructure as a service (IaaS), software as a service (SaaS), platform as a service (PaaS), and serverless.

What are the components of cloud infrastructure security?

There are at least seven basic components that make up a typical cloud environment and underpin infrastructure security.earning the best practices of each can help to secure each individual element against security threats:

  1. User accounts. User service accounts provide access to certain areas of critical cloud infrastructure.If compromised, hackers can gain access to sensitive data across the cloud network. These new accounts often feature default settings with little or no authentication processes. Identity and access management (IAC) tools can help to reinforce security by tightly controlling account access and authentication, cloud configuration monitoring can auto-detect unsecured accounts, and account usage as a whole can be monitored to detect real-time unusual activity.
  2. Servers. While cloud settings are rooted in virtualisation, physical hardware (including on-premises physical servers, load balancers, routers and storage devices) is still required behind the scenes, in different geographical locations. Maximising server security relies on controlling inbound and outbound communications – as well as encrypting communications – using SSH keys, and minimising access privileges.
  3. Storage systems. Abstracted storage systems and virtualised resources can use automation for scaling and provisioning requirements. Common security measures related to cloud storage include removing unused data, blocking access where it is not required, classifying data by its sensitivity, using identity and access management (IAM) systems, identifying and tracking connected devices, and using cloud data loss prevention (DLP) tools.
  4. Networks. Cloud services and systems can make use of public networks and virtual private networks (VPNs) – known as a VNet in Azure and a VPC in Amazon. Best practices for networks include using security groups and Network Access Control Lists (ACL) to limit network access, establishing firewalls to detect malware and other suspicious activity, and deploying cloud security posture management (CSPM) tools.
  5. Hypervisors. All cloud systems are based on hypervisors, making it possible to run multiple virtual machines with separate operating systems. For organisations using private cloud systems, securing hypervisors is a critical responsibility. This means hardening, patching, isolating and physically securing any machines that use hypervisors to data centers. Additionally, securing hardware caches, monitoring development and testing environments and controlling access is required.
  6. Databases. Cloud databases – together with the applications and cloud servers they are linked with – are vulnerable to data breaches as they are easily exposed to public networks. Any database security strategy should include limiting network access, enabling database security policies, locking down permissions, ensuring end user device security, and hardening configuration and instances.
  7. Kubernetes. All cloud computing layers need to have protective defences in place. Kubernetes, an open-source system that supports containerised applications, states that there are four key areas where security controls must be in place: code, containers, clusters and cloud.

If not properly configured and reinforced by best practice, each component can present an attack surface for cybercriminals to target.

What’s next for cloud infrastructure security?

If there’s one certainty in the cloud security space, it’s that its constant evolution demands that business leaders and providers stay on top of developing trends and threats.

Experts predict an increasing focus on the use of cloud forensics and incident response, allowing cybersecurity specialists greater visibility over, and faster response to, multi-cloud, serverless and container-based threats. Any tools and strategies that support process automation and simplification are also welcomed, and considered fundamental in addressing skills gaps in the digital security space and reducing cloud complexity. Throughout this evolution and beyond, security teams must prioritise proactive vigilance in order to effectively protect systems and assets, and manage use and scalability sustainably and securely.

Learn how to develop and implement impactful, effective cybersecurity solutions

Are you thinking about switching careers and joining the in-demand cybersecurity and data protection sector?

If so, you can gain essential computational thinking skills – together with an in-depth, practical understanding of safeguarding against cyberattacks – with the University of York’s online MSc Computer Science with Cyber Security programme.

Designed specifically for individuals from non-computing backgrounds, our flexible, 100%-online course covers a comprehensive range of topics to develop your skills and expertise including programming, network and IT infrastructure, system architecture and data science. In addition, you’ll gain in-depth understanding of the cybersecurity space – studying topics such as cryptography, cloud security, memory and resource management, access management auditing, data security and password protection – and applying cyber solutions to real-world problems.